
Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1065 | P a g e

Fault Tolerant Environment Using Hardware Failure Detection, Roll
Forward Recovery Approach and Microrebooting For Distributed Systems

Bhushan Sapre*, Anup Garje**, Dr. B. B. Mesharm***

*(Department of Computer Technology, Veetmata Jijabai Technilogical Institute,
Matunga, Mumbai)

**(Department of Computer Technology, Veetmata Jijabai Technilogical Institute,
Matunga, Mumbai)

***(Head of Dept. of Computer Technology, Veermata Jijabai Technological Institute,
Matunga Mumbai)

ABSTRACT

Fault Tolerant Environment is a complete programming
environment for the reliable execution of distributed
application programs. Fault Tolerant Distributed
Environment encompasses all aspects of modern fault-
tolerant distributed computing. The built-in user-
transparent error detection mechanism covers processor
node crashes and hardware transient failures. The
mechanism also integrates user-assisted error checks
into the system failure model. The nucleus non-blocking
checkpointing mechanism combined with a novel low
overhead roll forward recovery scheme delivers an
efficient, low-overload backup and recovery mechanism
for distributed processes. Fault Tolerant Distributed
Environment also provides a means of remote automatic
process allocation on distributed system nodes. In case
of recovery is not possible, we can use new
microrebooting approach to store the system to stable
state.

1. INTRODUCTION

Though cloud computing is rapidly developing
field, it is generally accepted that distributed systems
represent the backbone of today’s computing world. One of
their obvious benefits is that distributed systems possess the
ability to solve complex computational problems requiring
large computational by dividing them into smaller
problems. Distributed systems help to exploit parallelism to
speed-up execution of computation-hungry applications
such as neural-network training or various system
modeling. Another benefit of distributed systems is that
they reflect the global business and social environment in
which we live and work. The implementation of electronic
commerce, flight reservation systems, satellite surveillance
systems or real-time telemetry systems is unthinkable
without the services or intra and global distributed systems.

These areas require that their downtime is
negligible. The deployment of distributed systems in these
areas has put extra demand on their reliability and
availability. In a distributed system that is running number

applications it is important to provide fault-

tolerance, to avoid the waste of computations accomplished
on the whole distributed system when one of its nodes fails
to ensure failure transparency. Consistency is also one of
the measure requirements. In on-line and mission-critical
systems a fault in the system operation can disrupt control
systems, hurt sales, or endanger human lives. Distributed
environments running such applications must be highly
available, i.e. they should continue to provide stable and
accurate services despite faults in the underlying hardware.

Fault tolerant environment was developed to
harness the computational power of interconnected
workstations to deliver reliable distributed computing
services in the presence of hardware faults affecting
individual nodes in a distributed system. To achieve the
stated objective, Fault tolerant environment has to support
the autonomic distribution or the application processes and
provide means for user-transparent fault-tolerance in a
multi-node environment[10].

Addressing the reliability issues of distributed
systems involves tackling two problems: error detection and
process recovery. Error detection is concerned with
permanent and transient computer hardware faults as well
as faults in the application software and the communication
links. The recovery of failed distributed applications
requires recovering the local execution state of the
processes, as well as taking into consideration the state
of the communication channels between them at the time of
failure[10].

2 RELATED WORK

Fault-tolerance methods for distributed systems
have developed in two streams: checkpointing/rollback
recovery and process-replication mechanisms.

Process replication techniques have been widely

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1066 | P a g e

studied by many researchers. In this technique, required
processes are replicated and executed on different
machines. The assumption is made that all replicas of same
process will not fail at the same point of time and an
unfailed replica can be used to recover other replicas.
Although these techniques incur a smaller degradation in
performance when compared to checkpointing mechanisms,
they are not overhead-free. Updating of one replica requires
that the other replicas must be updated to maintain
consistency. However, the main hindrance to wide adoption
of process-replication methods in various areas is the heavy
cost of the redundant hardware needed for the execution of
the replicas.

In contrast with process replication mechanisms,

the other technique does not require duplication of
hardware or replication of processes. Instead, each process
periodically records its current state and/or some history of
the system in stable storage, and this action called
checkpointing. If a failure occurs, processes return to the
previous checkpoint (rollback) and resume their execution
from this checkpoint. A checkpoint is a snapshot of the
local state of a process along timeline, saved on local non-
volatile storage to survive process failures. A global
checkpoint of an n-process distributed system consists of n
checkpoints (local) such that each of these n checkpoints
corresponds uniquely to one of the n processes. A global
checkpoint C is defined as a consistent global checkpoint if
no message is sent after a checkpoint of C and received
before another checkpoint of C. The checkpoints belonging
to a consistent global checkpoint are called globally
consistent checkpoints (GCCs).The overhead that this
technique incurs is greater than that of process replication
mechanisms because checkpoints are taken during failure-
free operation of processes, and rollback-recovery requires
certain actions to be performed to ensure consistency of
system when processes recover from crash.

The concept of roll-forward checkpointing is
considered to achieve a simple recovery comparable to that
in the synchronous approach. This concept helps in limiting
the amount of rollback of a process (known as domino
effect) in the event of a failure. The roll-forward
checkpointing approach has been chosen as the basis of the
because of its simplicity and some important advantages it
offers from the viewpoints of both checkpointing and
recovery.

In case the recovery using r0ll-forward approach is
not possible, then we have no choice other than restoring

the system to a best known stable state. To restore

the system to a best known stable state, the best option is
rebooting the system. Rebooting involves restarting of all
the components of the system including those once which

were working correctly before the system failed. Restarting
the whole system can be time consuming sometime which
increases the downtime of the system. This is not tolerable
in the distributed systems that work 24/7. Therefore we can
minimize the rebooting using microreboot approach. In this
approach, only those components are rebooted which failed
in the system.

2.1 Work done in Roll-forward checkpointing

The objective of the algorithm is to design a
checkpointing / recovery algorithm that will limit the effect
of the domino phenomenon in a distributed computation
while at the same time will offer a recovery mechanism that
is as simple as in the synchronous checkpointing approach.
In order to achieve its objective, processes go on taking
checkpoints (basic checkpoints) asynchronously whenever
needed whereas the roll-forward checkpointing algorithm
runs periodically (say the time period is T) by an initiator
process to determine the GCCs. During the execution of the
algorithm an application process P is forced to take a
checkpoint if it has sent an application message m after its
latest basic checkpoint which was taken by process
asynchronously. It means that the message m cannot remain
an orphan because of the presence of the forced checkpoint
because every sent message is recorded. It implies that in
the event of a failure occurring in the distributed system
before the next periodic execution of the algorithm, process
P can restart simply from this forced checkpoint after the
system recovers from the failure. However, if process P has
not sent any message after its latest basic checkpoint, the
algorithm does not force the process to take a checkpoint.
In such a situation process P can restart simply from its
latest basic checkpoint[7].

2.2 Difference between Roll forward and Rollback
approach

 Roll forward stores only latest checkpoint and
rollback stores all checkpoints and requires
truncation.

 Roll forward takes two kinds of checkpoints
forced and co-ordinated while roll back takes only
coordinated

 In roll forward, every process takes forced
checkpoint after it sends message, it is not
necessary in rollback approach

 Roll forward guarantees that no orphans exist
while roll back makes no such promise[5].

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1067 | P a g e

3 PROPOSED SYSTEM

3.1 Overview of the Fault tolerant environment

Fault tolerant environment is designed to support

computation-intensive applications executing on networked
workstations such as Railway reservation system. While the
‘economy of effort’ stipulates the introduction of measures
that prevent the loss of the long-running computation
results executing on distributed nodes, frequently it is
difficult to justify the use or expansive hardware replication
fault-tolerance techniques[10]. Another relevant area for the
application of Fault tolerant environment is on-line
distributed programs such as decision support control
mechanisms and flight reservation systems. Such systems
can tolerate a short delay in services -for fault-management,
but a complete halt of the system upon the occurrence of
faults cannot be accepted i.e. they require immediate
recovery for the failure.

Figure presents an abstract view of Fault tolerant
environment operation. The error detection and fault
recovery modules run on a central node (server) that is
assumed to be fault-tolerant, i.e. the probability of its failure
is negligible. The required reliability of the central node
might be obtained by hardware duplication. It is assumed
that the probability of the hardware failure of central server
is negligible. Upon system start-up, Fault tolerant
environment identities the configuration of the underlying
network and presents it to the user, which selects the
network node(s) on which the application processes should
be executed. Fault tolerant environment spawns the
application processes on the specified nodes and
periodically triggers their checkpointing to save their
execution image together with any inter-process messages
which are saved into stable storage Nodes participating in
the application execution are continuously monitored, and
in the event of no& crash, checkpoints of all the processes
running on the failed node arc extracted from stable storage
and the processes arc restarted on an operative node.

3.2 Detection of faults in the hardware environment

The starting point for all fault-tolerant strategies is
the detection of an erroneous state that, in the absence of
any corrective actions, could lead to a failure of the system.
Fault tolerant environment error detection mechanism
(EDM) identifies two types of hardware faults: processor
node crashes (as caused by power failure) and transient
hardware failures (temporary memory flips, bus errors, etc.)
that cause the failure of a single application process, and
also allows the integration of user-programmed

(application-specific) error checks[10].

3.3 Detecting node failures

Detection of node failures is based on a central

node monitoring task that periodically sends
acknowledgement requests to all the nodes in the system.

Each node must acknowledge within a predefined time
interval (acknowledgment timeout), otherwise it will be
considered as having ‘crashed’.

The Acknowledgement timeout is calculated as

Where

 RTTi is the current estimate of round-trip time

 RTTi+1, is the new computed value, and

 α is a constant between 0 and 1 that controls how
rapidly the estimated rtt adapts to the change in
network load

3.2 Detecting application-process failures

When a user-process exits, analyses the process
exit status is analyzed by Fault tolerant environment to
determine whether it exited normally or prematurely due to
a failure, in which case the failed process recovery is
initiated. With regard to the user-assisted error detection, a
special signal handler was dedicated to service the detection
of such errors. All the programmer has to do is to raise an
interrupt with a predefined signal number and the detection
mechanism will handle the error as if it was raised by the
kerne1 (OS) detection mechanism (KDM).

For a centralized detection mechanism - such as
Fault tolerant environment’s, it is vital to consider the

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1068 | P a g e

latency or detecting errors on the distributed system nodes.

3.3 Recovery of distributed application processes

3.3.1 Creation of checkpoints

Assume that the distributed system has n processes
(P0, P1, . . . , P i, . . . , Pn-1). Let Cx

i (0 ≤ i ≤ n - 1, x > 0)
denote the x-th checkpoint of process Pi, where i is the
process identifier, and x is the checkpoint number. Each
process Pi maintains a flag ci (Boolean). The flag is initially
set at zero. It is set at 1 only when process P i sends its first
application message after its latest checkpoint. It is reset to
0 again after process P i takes a checkpoint. Flag ci is stored
in local RAM of the processor running process Pi for its
faster updating. Note that the flag ci is set to 1 only once
independent of how many messages process P i sends after
its latest checkpoint. In addition, process Pi maintains an

integer variable Ni which is initially set at 0 and is
incremented by 1 each time the algorithm is invoked. As in
the classical synchronous approach, we assume that besides
the system of n application processes, there exists an
initiator process PI that invokes the execution of the
algorithm to determine the GCCs periodically. However, we
have shown later that the proposed algorithm can easily be
modified so that the application processes can assume the
role of the initiator process in turn. We assume that a
checkpoint Cx

i will be stored in stable storage if it is a GCC;
otherwise in the disk unit of the processor running the
process Pi replacing its previous checkpoint Cx-1

i. We have
shown that the proposed algorithm considers only the recent
checkpoints of the processes to determine a consistent
global checkpoint of the system. We assume that the
initiator process PI broadcasts a control message Mask to all
processes asking them to take their respective checkpoints.
The time between successive invocations of the algorithm is
assumed to be much larger than the individual time periods
of the application processes used to take their basic
checkpoints.

In this work, unless otherwise specified by ‘a process’ we
mean an application (computing) process.

Example 1: Consider the system shown in Fig. 1. Examine
the diagram (left of the dotted line). At the starting states of
the processes P0 and P1, the flags c0 and c1 are initialised to
zero. The flag c1 is set at 1 when process P1 decides to send
the message m1 to P0. It is reset to 0 when process P1 takes
its basic checkpoint C1

1. Observe that the flag c1 is set to 1
only once irrespective of how many messages process P1
has sent before taking the checkpoint C1

1. Process P1 has
not sent any message between checkpoints C1

1 and C1
2. So,

c1 remains at 0. Also it is clear why c1 still remains at 0 after
the checkpoint C1

2. Process P0 sets its flag c0 to 1 when it
decides to send the message m3 after its latest checkpoint
C0

1 [9].

3.3.2 Significance of forced checkpoints

Consider the system of Fig. 1 (ignore the
checkpoint C2

0 for the time being). Suppose at time T2 a
failure ‘f’ occurs. According to the asynchronous approach
processes P0 and P1 will restart their computation from C0

1
and C1

1, since these are the latest GCCs.

Now, consider a different approach. Suppose, at
time T1, an attempt is made to determine the GCCs using
the idea of forced checkpoints. We start with the recent
checkpoints C0

1 and C1
2 , and find that the message m3 is an

orphan. Observe that the flag co of process P0 is 1, which
means that process P0 has not yet taken a checkpoint after
sending the message m3. However, if at time T1 process P0
is forced to take the checkpoint C0

2 (which is not a basic
checkpoint of P0), this newly created checkpoint C0

2
becomes consistent with C1

2 . Now, if a failure ‘f’ occurs at
time T2, then after recovery, P0 and P1 can simply restart
their computation from their respective consistent states C0

2
and C1

2 . Observe that process P1 now restarts from C1 2 in

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1069 | P a g e

the new situation instead of restarting from C1

1.
Therefore the amount of rollback per process has been
reduced. Note that these two latest checkpoints form a
recent consistent global checkpoint as in the synchronous
approach. The following condition states when a process
has to take a forced checkpoint[9].

Condition C: For a given set of the latest
checkpoints (basic), each from a different process in a
distributed system, a process Pi is forced to take a
checkpoint Ci

m+1, if after its previous checkpoint Ci
m

belonging to the set, its flag ci = 1.

3.3.3 Non-blocking approach

We explain first the problem associated with non-
blocking approach. Consider a system of two processes Pi
and Pj. Assume that both processes have sent messages after
their last checkpoints. So both ci and cj are set at 1. Assume
that the initiator process PI has sent the request message
Mask. Let the request reach Pi before Pj. Then Pi takes its
checkpoint Ci

k because ci = 1 and sends a message mi to Pj.
Now consider the following scenario. Suppose a little later
process Pj receives mi and still Pj has not received Mask. So,
Pj processes the message. Now the request from PI arrives
at Pj. Process P j finds that cj = 1. So it takes a checkpoint
Cj

r. We find that message mi has become an orphan because
of the checkpoint Cj

r. Hence, Ci
k and Cj

r cannot be
consistent[9].

3.3.4 Solution to the non-blocking problem

To solve this problem, we propose that a process
be allowed to send both piggybacked and non-piggybacked
application messages. We explain the idea below. Each
process Pi maintains an integer variable Ni, initially set at 0
and is incremented by 1 each time process Pi receives the
message Mask from the initiator. Thus variable Ni
represents how many times the check pointing algorithm
has been executed including the current one (according to
the knowledge of process Pi). Note that at any given time t,
for any two processes Pi and Pj, their corresponding
variables Ni and Nj may not have the same values. It
depends on which process has received the message Mask
first. However, it is obvious that |Ni - Nj| is either 0 or 1.
Below we first state the solution for a two-process system.
The idea is similarly applicable for an n process system as
well.

Two-process solution:

Consider a distributed system of two processes Pi

and Pj only. Assume that Pi has received Mask from the
initiator process PI for the k th execution of the algorithm,

and has taken a decision whether to take a

checkpoint or not, and then has implemented its decision.
Also assume that P i now wants to send an application
message mi for the first time to Pj after it finished
participating in the k th execution of the algorithm. Observe
that Pi has no idea whether Pj has received Mask yet and
has taken its checkpoint. To make sure that the message mi
can never be an orphan, Pi piggybacks mi with the variable
Ni. Process Pj receives the piggybacked message <mi, Ni>
from P i. We now explain why message mi can never been
an orphan. Note that Ni = k; that is it is the kth execution of
the algorithm that process Pi has last been involved with. It
means the following to the receiver P j of this piggybacked
message:

(1) Process Pi has already received Mask from the initiator
PI for the k th execution of the algorithm,

(2) Pi has taken a decision if it needs to take a forced
checkpoint and has implemented it,

(3) Pi has resumed its normal operation and then has sent
this application message mi.

(4) The sending event of message mi has not yet been
recorded by Pi.

3.4 Microrebooting

 Microrebooting in a new approach for restoring
the system to a stable state. Rebooting is generally accepted
as a universal form of recovery for many software failures
in the industry, even when the exact causes of failure are
unknown. Rebooting provides a high-confidence way to
reclaim stale or leaked resources. Rebooting is easy to
perform and automate and it returns the system to the best
known, understood and tested state[8].

Unfortunately rebooting for an unexpected crash
can take a very long time to reconstruct the state. A
microreboot is the selective crash-restart of only those parts
of a system that trigger the observed failure. This technique
aims to preserve the recovery advantages of rebooting while
mitigating the drawbacks. In general, a small subset of
components is often responsible for a global system failure,
thus making the microreboot an effective technique for
system-global recovery.

By reducing the recovery to the smaller subset of
components, microrebooting minimizes the amount of state
loss and reconstruction. To reduce the state loss, we need to
store the state that must survive the microrebooting process
into separate repositories which are crash safe. This
separates the problem of data recovery from application-

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1070 | P a g e

logic recovery and lets us perform the latter at finer grain
than the process level.

Microreboots are largely as effective as full
reboots but 30 times faster. In our prototype, microreboots
recover from a large category of failures for which system
administrators normally restart the application, including
deadlocked or hung threads, memory leaks, and corrupt
volatile data. If a component microreboot doesn’t correct
the failure, we can progressively restart larger subsets of
components.

Because the component-level reboot time is
determined by how long the system takes to restart the
component and the component takes to reinitialize, a
microrebootable application should aim for components
that are as small as possible[8].

Microrebooting just the necessary components
reduces not only recovery time but also its effects on the
system’s end users.

4 CONCLUSION

Fault tolerant environment was designed to
provide a fault-tolerant distributed environment that
provides distributed system users and parallel programmers
with an integrated processing environment, where they can
reliably execute their concurrent(distributed) applications
despite errors that might occur in the underlying hardware.

Fault tolerant environment user-transparent error

detection mechanism covers processor node crashes and
hardware transient failures, and allows for the integration of
user-programmed error checks into the detectable errors
database.

A non-blocking checkpointing policy was adopted
to backup and restore the state of the application processes.
The checkpointing mechanism forks an exact copy
(thread)of the application program, this thread performs all
the checkpointing routines without suspending the
execution of the application code, thus significantly
reducing the checkpointing overhead.

In order to co-ordinate the operation of the
checkpointing mechanism in distributed computing
environments, a novel approach to reliable distributed
computing for messages-passing applications was devised.
It takes advantage of the low failure-free overhead of
coordinated checkpointing methods with logging messages
that cross the recovery line to avoid blocking the
application process during the checkpointing protocol. The
low failure-free overhead is at the expense of a longer

rollback time, which is admissible because of the

extended execution time of the targeted application.

The noteworthy point of the presented approach is
that a process receiving a message does not need to worry
whether the received message may become an orphan or
not. It is the responsibility of the sender of the message to
make it non-orphan. Because of this, each process is able to
perform its responsibility independently and simultaneously
with others just by testing its local Boolean flag. This
makes the algorithm a single phase one and thereby, in
effect, makes the algorithm fast, simple and efficient.

A microreboot is the selective crash-restart of only

those parts of a system that trigger the observed failure.
Microreboots are largely as effective as full reboots but 30
times faster[8].

REFERENCES

[1] Wang, Y.-M.: ‘Consistent global checkpoints that
contain a given set of local checkpoints’, IEEE
Trans. Comput., 1997, 46, (4), pp. 456–468

[2] Koo, R., and Toueg, S.: ‘Check pointing and

rollback-recovery for distributed systems’, IEEE
Trans. Software Eng., 1987, 13, (1), pp. 23–31

[3] Venkatesan, S., Juang, T.T.-Y., and Alagar, S.:

‘Optimistic crash recovery without changing
application messages’, IEEE Trans. Parallel
Distrib. Syst., 1997, 8, (3), pp. 263–271

[4] Cao, G., and Singhal, M.: ‘On coordinated check

pointing in distributed systems’, IEEE Trans.
Parallel Distrib. Syst., 1998, 9, (12), pp. 1213–
1225

[5] Pradhan, D.K., and Vaidya, N.H.: ‘Roll-forward

check pointing scheme: a novel fault-tolerant
architecture’, IEEE Trans. Comput., 1994, 43,
(10), pp. 1163–1174

[6] Gass, R.C., and Gupta, B.: ‘An efficient check

pointing scheme for mobile computing systems’.
Proc. ISCA 13th Int. Conf. Computer Applications
in Industry and Engineering, Honolulu, USA,
November 2000, pp. 323–328

Bhushan Sapre, Anup Garje, Dr. B. B. Mesharm/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

VOL. 1, ISSUE 3, PP.1065-1071

1071 | P a g e

[7] Gupta, B., Banerjee, S.K., and Liu, B.: ‘Design of
new roll-forward recovery approach for
distributed systems’, IEE Proc., Comput. Digit.
Tech., 2002, 149, (3), pp. 105–112

[8] George Candea, Aaron B. Brown, Armando Fox

and David Patterson: ‘Recovery-Oriented
Computing: Building Multitier Dependability’,

[9] IEEE Computer Society, November 2004, pp 60-
67

[10] B. Gupta, S. Rahimi and Z. Liu : ‘Novel low-

overhead roll-forward recovery scheme for
distributed systems’, IET Comput. Digit. Tech.,
2007, 1, (4), pp. 397–404

[11] T. Osman and A. Bargiela: ‘FADI: A fault tolerant
environment for open distributed computing’ , IEE
Proc.-Softw., Vol. 147, No. 3, pp 91-99

