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ABSTRACT 

Fault Tolerant Environment is a complete programming 
environment for the reliable execution of distributed 
application programs. Fault Tolerant Distributed 
Environment encompasses all aspects of modern fault-
tolerant distributed computing. The built-in user-
transparent error detection mechanism covers processor 
node crashes and hardware transient failures. The 
mechanism also integrates user-assisted error checks 
into the system failure model. The nucleus non-blocking 
checkpointing mechanism combined with a novel low 
overhead roll forward recovery scheme delivers an 
efficient, low-overload backup and recovery mechanism 
for distributed processes. Fault Tolerant Distributed 
Environment also provides a means of remote automatic 
process allocation on distributed system nodes. In case 
of recovery is not possible, we can use new 
microrebooting approach to store the system to stable 
state. 

1. INTRODUCTION 
 

Though cloud computing is rapidly developing 
field, it is generally accepted that distributed systems 
represent the backbone of today’s computing world. One of 
their obvious benefits is that distributed systems possess the 
ability to solve complex computational problems requiring 
large computational by dividing them into smaller 
problems. Distributed systems help to exploit parallelism to 
speed-up execution of computation-hungry applications 
such as neural-network training or various system 
modeling. Another benefit of distributed systems is that 
they reflect the global business and social environment in 
which we live and work. The implementation of electronic 
commerce, flight reservation systems, satellite surveillance 
systems or real-time telemetry systems is unthinkable 
without the services or intra and global distributed systems. 
 

These areas require that their downtime is 
negligible. The deployment of distributed systems in these 
areas has put extra demand on their reliability and 
availability. In a distributed system that is running number  

 

 
 
applications it is important to provide fault-

tolerance, to avoid the waste of computations accomplished 
on the whole distributed system when one of its nodes fails 
to ensure failure transparency. Consistency is also one of 
the measure requirements. In on-line and mission-critical 
systems a fault in the system operation can disrupt control 
systems, hurt sales, or endanger human lives. Distributed 
environments running such applications must be highly 
available, i.e. they should continue to provide stable and 
accurate services despite faults in the underlying hardware. 
 

Fault tolerant environment was developed to 
harness the computational power of interconnected 
workstations to deliver reliable distributed computing 
services in the presence of hardware faults affecting 
individual nodes in a distributed system. To achieve the 
stated objective, Fault tolerant environment has to support 
the autonomic distribution or the application processes and 
provide means for user-transparent fault-tolerance in a 
multi-node environment[10]. 
 

Addressing the reliability issues of distributed 
systems involves tackling two problems: error detection and 
process recovery. Error detection is concerned with 
permanent and transient computer hardware faults as well 
as faults in the application software and the communication 
links. The recovery of failed distributed applications 
requires recovering the local execution state of the 
processes, as well as taking into consideration the state  
of the communication channels between them at the time of 
failure[10]. 

 
 
2 RELATED WORK 
 

Fault-tolerance methods for distributed systems 
have developed in two streams: checkpointing/rollback 
recovery and process-replication mechanisms.  

 
Process replication techniques have been widely  
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studied by many researchers. In this technique, required 
processes are replicated and executed on different 
machines. The assumption is made that all replicas of same 
process will not fail at the same point of time and an 
unfailed replica can be used to recover other replicas. 
Although these techniques incur a smaller degradation in 
performance when compared to checkpointing mechanisms, 
they are not overhead-free. Updating of one replica requires 
that the other replicas must be updated to maintain 
consistency. However, the main hindrance to wide adoption 
of process-replication methods in various areas is the heavy 
cost of the redundant hardware needed for the execution of 
the replicas. 

 
In contrast with process replication mechanisms, 

the other technique does not require duplication of 
hardware or replication of processes. Instead, each process 
periodically records its current state and/or some history of 
the system in stable storage, and this action called 
checkpointing. If a failure occurs, processes return to the 
previous checkpoint (rollback) and resume their execution 
from this checkpoint. A checkpoint is a snapshot of the 
local state of a process along timeline, saved on local non-
volatile storage to survive process failures. A global 
checkpoint of an n-process distributed system consists of n 
checkpoints (local) such that each of these n checkpoints 
corresponds uniquely to one of the n processes. A global 
checkpoint C is defined as a consistent global checkpoint if 
no message is sent after a checkpoint of C and received 
before another checkpoint of C. The checkpoints belonging 
to a consistent global checkpoint are called globally 
consistent checkpoints (GCCs).The overhead that this 
technique incurs is greater than that of process replication 
mechanisms because checkpoints are taken during failure-
free operation of processes, and rollback-recovery requires 
certain actions to be performed to ensure consistency of 
system when processes recover from crash. 
 

The concept of roll-forward checkpointing is 
considered to achieve a simple recovery comparable to that 
in the synchronous approach. This concept helps in limiting 
the amount of rollback of a process (known as domino 
effect) in the event of a failure. The roll-forward 
checkpointing approach has been chosen as the basis of the 
because of its simplicity and some important advantages it 
offers from the viewpoints of both checkpointing and 
recovery. 
 

In case the recovery using r0ll-forward approach is 
not possible, then we have no choice other than restoring  

 
the system to a best known stable state. To restore 

the system to a best known stable state, the best option is 
rebooting the system. Rebooting involves restarting of all 
the components of the system including those once which  

 
were working correctly before the system failed. Restarting 
the whole system can be time consuming sometime which 
increases the downtime of the system. This is not tolerable 
in the distributed systems that work 24/7. Therefore we can 
minimize the rebooting using microreboot approach. In this 
approach, only those components are rebooted which failed 
in the system. 
 
2.1 Work done in Roll-forward checkpointing 

The objective of the algorithm is to design a 
checkpointing / recovery algorithm that will limit the effect 
of the domino phenomenon in a distributed computation 
while at the same time will offer a recovery mechanism that 
is as simple as in the synchronous checkpointing approach. 
In order to achieve its objective, processes go on taking 
checkpoints (basic checkpoints) asynchronously whenever 
needed whereas the roll-forward checkpointing algorithm 
runs periodically (say the time period is T) by an initiator 
process to determine the GCCs. During the execution of the 
algorithm an application process P is forced to take a 
checkpoint if it has sent an application message m after its 
latest basic checkpoint which was taken by process 
asynchronously. It means that the message m cannot remain 
an orphan because of the presence of the forced checkpoint 
because every sent message is recorded. It implies that in 
the event of a failure occurring in the distributed system 
before the next periodic execution of the algorithm, process 
P can restart simply from this forced checkpoint after the 
system recovers from the failure. However, if process P has 
not sent any message after its latest basic checkpoint, the 
algorithm does not force the process to take a checkpoint. 
In such a situation process P can restart simply from its 
latest basic checkpoint[7]. 

2.2 Difference between Roll forward and Rollback 
approach 
 

 Roll forward stores only latest checkpoint and 
rollback stores all checkpoints and requires 
truncation. 

 Roll forward takes two kinds of checkpoints 
forced and co-ordinated while roll back takes only 
coordinated 

 In roll forward, every process takes forced 
checkpoint after it sends message, it is not 
necessary in rollback approach 

 Roll forward guarantees that no orphans exist 
while roll back makes no such promise[5].  
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3 PROPOSED SYSTEM 
 
 
3.1 Overview of the Fault tolerant environment 

 
Fault tolerant environment is designed to support 

computation-intensive applications executing on networked 
workstations such as Railway reservation system. While the 
‘economy of effort’ stipulates the introduction of measures 
that prevent the loss of the long-running computation 
results executing on distributed nodes, frequently it is 
difficult to justify the use or expansive hardware replication 
fault-tolerance techniques[10]. Another relevant area for the 
application of Fault tolerant environment is on-line 
distributed programs such as decision support control 
mechanisms and flight reservation systems. Such systems 
can tolerate a short delay in services -for fault-management, 
but a complete halt of the system upon the occurrence of 
faults cannot be accepted i.e. they require immediate 
recovery for the failure. 
 
 

Figure presents an abstract view of Fault tolerant 
environment operation. The error detection and fault 
recovery modules run on a central node (server) that is 
assumed to be fault-tolerant, i.e. the probability of its failure 
is negligible. The required reliability of the central node 
might be obtained by hardware duplication. It is assumed 
that the probability of the hardware failure of central server 
is negligible. Upon system start-up, Fault tolerant 
environment identities the configuration of the underlying 
network and presents it to the user, which selects the 
network node(s) on which the application processes should 
be executed. Fault tolerant environment spawns the 
application processes on the specified nodes and 
periodically triggers their checkpointing to save their 
execution image together with any inter-process messages 
which are saved into stable storage Nodes participating in 
the application execution are continuously monitored, and 
in the event of no& crash, checkpoints of all the processes 
running on the failed node arc extracted from stable storage 
and the processes arc restarted on an operative node. 

 
 
3.2 Detection of faults in the hardware environment 
 

The starting point for all fault-tolerant strategies is 
the detection of an erroneous state that, in the absence of 
any corrective actions, could lead to a failure of the system. 
Fault tolerant environment error detection mechanism 
(EDM) identifies two types of hardware faults: processor 
node crashes (as caused by power failure) and transient 
hardware failures (temporary memory flips, bus errors, etc.) 
that cause the failure of a single application process, and 
also allows the integration of user-programmed  

 
 
 
 
 
 
(application-specific) error checks[10]. 
 
 
3.3 Detecting node failures 

 
Detection of node failures is based on a central 

node monitoring task that periodically sends 
acknowledgement requests to all the nodes in the system. 

Each node must acknowledge within a predefined time 
interval (acknowledgment timeout), otherwise it will be 
considered as having ‘crashed’. 
 
 
The Acknowledgement timeout is calculated as 
 

 
 
 
Where 

 RTTi is the current estimate of round-trip time 

 RTTi+1, is the new computed value, and 

 α is a constant between 0 and 1 that controls how 
rapidly the estimated rtt adapts to the change in 
network load 

 
3.2 Detecting application-process failures 
 

When a user-process exits, analyses the process 
exit status is analyzed by Fault tolerant environment to 
determine whether it exited normally or prematurely due to 
a failure, in which case the failed process recovery is 
initiated. With regard to the user-assisted error detection, a 
special signal handler was dedicated to service the detection 
of such errors. All the programmer has to do is to raise an 
interrupt with a predefined signal number and the detection 
mechanism will handle the error as if it was raised by the 
kerne1 (OS) detection mechanism (KDM). 
 

For a centralized detection mechanism - such as 
Fault tolerant environment’s, it is vital to consider the  
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latency or detecting errors on the distributed system nodes. 
 
 
3.3 Recovery of distributed application processes 
 
3.3.1 Creation of checkpoints 
 

Assume that the distributed system has n processes 
(P0, P1, . . . , P i, . . . , Pn-1). Let Cx

i (0 ≤ i ≤ n - 1, x > 0) 
denote the x-th checkpoint of process Pi, where i is the 
process identifier, and x is the checkpoint number. Each 
process Pi maintains a flag ci (Boolean). The flag is initially 
set at zero. It is set at 1 only when process P i sends its first 
application message after its latest checkpoint. It is reset to 
0 again after process P i takes a checkpoint. Flag ci is stored 
in local RAM of the processor running process Pi for its 
faster updating. Note that the flag ci is set to 1 only once 
independent of how many messages process P i sends after 
its latest checkpoint. In addition, process Pi maintains an 

integer variable Ni which is initially set at 0 and is 
incremented by 1 each time the algorithm is invoked. As in 
the classical synchronous approach, we assume that besides 
the system of n application processes, there exists an 
initiator process PI that invokes the execution of the 
algorithm to determine the GCCs periodically. However, we 
have shown later that the proposed algorithm can easily be 
modified so that the application processes can assume the 
role of the initiator process in turn. We assume that a 
checkpoint Cx

i will be stored in stable storage if it is a GCC; 
otherwise in the disk unit of the processor running the 
process Pi replacing its previous checkpoint Cx-1

i. We have 
shown that the proposed algorithm considers only the recent 
checkpoints of the processes to determine a consistent 
global checkpoint of the system. We assume that the 
initiator process PI broadcasts a control message Mask to all 
processes asking them to take their respective checkpoints. 
The time between successive invocations of the algorithm is 
assumed to be much larger than the individual time periods 
of the application processes used to take their basic 
checkpoints. 

 
In this work, unless otherwise specified by ‘a process’ we 
mean an application (computing) process. 
 
Example 1: Consider the system shown in Fig. 1. Examine 
the diagram (left of the dotted line). At the starting states of 
the processes P0 and P1, the flags c0 and c1 are initialised to 
zero. The flag c1 is set at 1 when process P1 decides to send 
the message m1 to P0. It is reset to 0 when process P1 takes 
its basic checkpoint C1

1. Observe that the flag c1 is set to 1 
only once irrespective of how many messages process P1 
has sent before taking the checkpoint C1

1. Process P1 has 
not sent any message between checkpoints C1

1 and C1
2. So, 

c1 remains at 0. Also it is clear why c1 still remains at 0 after 
the checkpoint C1

2. Process P0 sets its flag c0 to 1 when it 
decides to send the message m3 after its latest  checkpoint 
C0

1 [9]. 
 
 
 

3.3.2 Significance of forced checkpoints 
 

Consider the system of Fig. 1 (ignore the 
checkpoint C2

0 for the time being). Suppose at time T2 a 
failure ‘f’ occurs. According to the asynchronous approach 
processes P0 and P1 will restart their computation from C0

1 
and C1

1, since these are the latest GCCs. 
 

Now, consider a different approach. Suppose, at 
time T1, an attempt is made to determine the GCCs using 
the idea of forced checkpoints. We start with the recent 
checkpoints C0

1 and C1
2 , and find that the message m3 is an 

orphan. Observe that the flag co of process P0 is 1, which 
means that process P0 has not yet taken a checkpoint after 
sending the message m3. However, if at time T1 process P0 
is forced to take the checkpoint C0

2 (which is not a basic 
checkpoint of P0), this newly created checkpoint C0

2 
becomes consistent with C1

2 . Now, if a failure ‘f’ occurs at 
time T2, then after recovery, P0 and P1 can simply restart 
their computation from their respective consistent states C0

2 
and C1

2 . Observe that process P1 now restarts from C1 2 in  
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the new situation instead of restarting from C1

1. 
Therefore the amount of rollback per process has been 
reduced. Note that these two latest checkpoints form a 
recent consistent global checkpoint as in the synchronous 
approach. The following condition states when a process 
has to take a forced checkpoint[9]. 
 

Condition C: For a given set of the latest 
checkpoints (basic), each from a different process in a 
distributed system, a process Pi is forced to take a 
checkpoint Ci

m+1, if after its previous checkpoint Ci
m 

belonging to the set, its flag ci = 1. 
 
 
3.3.3 Non-blocking approach 
 

We explain first the problem associated with non-
blocking approach. Consider a system of two processes Pi 
and Pj. Assume that both processes have sent messages after 
their last checkpoints. So both ci and cj are set at 1. Assume 
that the initiator process PI has sent the request message 
Mask. Let the request reach Pi before Pj. Then Pi takes its 
checkpoint Ci

k because ci = 1 and sends a message mi to Pj. 
Now consider the following scenario. Suppose a little later 
process Pj receives mi and still Pj has not received Mask. So, 
Pj processes the message. Now the request from PI arrives 
at Pj. Process P j finds that cj = 1. So it takes a checkpoint 
Cj

r. We find that message mi has become an orphan because 
of the checkpoint Cj

r. Hence, Ci
k and Cj

r cannot be 
consistent[9]. 
 
3.3.4 Solution to the non-blocking problem 
 

To solve this problem, we propose that a process 
be allowed to send both piggybacked and non-piggybacked 
application messages. We explain the idea below. Each 
process Pi maintains an integer variable Ni, initially set at 0 
and is incremented by 1 each time process Pi receives the 
message Mask from the initiator. Thus variable Ni 
represents how many times the check pointing algorithm 
has been executed including the current one (according to 
the knowledge of process Pi). Note that at any given time t, 
for any two processes Pi and Pj, their corresponding 
variables Ni and Nj may not have the same values. It 
depends on which process has received the message Mask 
first. However, it is obvious that |Ni - Nj| is either 0 or 1. 
Below we first state the solution for a two-process system. 
The idea is similarly applicable for an n process system as 
well. 
 
Two-process solution: 

 
Consider a distributed system of two processes Pi 

and Pj only. Assume that Pi has received Mask from the 
initiator process PI for the k th execution of the algorithm,  

 
and has taken a decision whether to take a 

checkpoint or not, and then has implemented its decision. 
Also assume that P i now wants to send an application 
message mi for the first time to Pj after it finished 
participating in the k th execution of the algorithm. Observe 
that Pi has no idea whether Pj has received Mask yet and 
has taken its checkpoint. To make sure that the message mi 
can never be an orphan, Pi piggybacks mi with the variable 
Ni. Process Pj receives the piggybacked message <mi, Ni> 
from P i. We now explain why message mi can never been 
an orphan. Note that Ni = k; that is it is the kth execution of 
the algorithm that process Pi has last been involved with. It 
means the following to the receiver P j of this piggybacked 
message: 
 
(1) Process Pi has already received Mask from the initiator 
PI for the k th execution of the algorithm, 
 
(2) Pi has taken a decision if it needs to take a forced 
checkpoint and has implemented it, 
 
(3) Pi has resumed its normal operation and then has sent 
this application message mi. 
 
(4) The sending event of message mi has not yet been 
recorded by Pi. 
 
 
3.4 Microrebooting 
 
 Microrebooting in a new approach for restoring 
the system to a stable state. Rebooting is generally accepted 
as a universal form of recovery for many software failures 
in the industry, even when the exact causes of failure are 
unknown. Rebooting provides a high-confidence way to 
reclaim stale or leaked resources. Rebooting is easy to 
perform and automate and it returns the system to the best 
known, understood and tested state[8]. 
  

Unfortunately rebooting for an unexpected crash 
can take a very long time to reconstruct the state. A 
microreboot is the selective crash-restart of only those parts 
of a system that trigger the observed failure. This technique 
aims to preserve the recovery advantages of rebooting while 
mitigating the drawbacks. In general, a small subset of 
components is often responsible for a global system failure, 
thus making the microreboot an effective technique for 
system-global recovery. 
  

By reducing the recovery to the smaller subset of 
components, microrebooting minimizes the amount of state 
loss and reconstruction. To reduce the state loss, we need to 
store the state that must survive the microrebooting process 
into separate repositories which are crash safe. This 
separates the problem of data recovery from application- 
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logic recovery and lets us perform the latter at finer grain 
than the process level. 
  

Microreboots are largely as effective as full 
reboots but 30 times faster. In our prototype, microreboots 
recover from a large category of failures for which system 
administrators normally restart the application, including 
deadlocked or hung threads, memory leaks, and corrupt 
volatile data. If a component microreboot doesn’t correct 
the failure, we can progressively restart larger subsets of 
components. 
  

Because the component-level reboot time is 
determined by how long the system takes to restart the 
component and the component takes to reinitialize, a 
microrebootable application should aim for components 
that are as small as possible[8]. 
  

Microrebooting just the necessary components 
reduces not only recovery time but also its effects on the 
system’s end users. 
 
4 CONCLUSION 
 

Fault tolerant environment was designed to 
provide a fault-tolerant distributed environment that 
provides distributed system users and parallel programmers 
with an integrated processing environment, where they can 
reliably execute their concurrent(distributed) applications 
despite errors that might occur in the underlying hardware. 

 
Fault tolerant environment user-transparent error 

detection mechanism covers processor node crashes and 
hardware transient failures, and allows for the integration of 
user-programmed error checks into the detectable errors 
database. 
 

A non-blocking checkpointing policy was adopted 
to backup and restore the state of the application processes. 
The checkpointing mechanism forks an exact copy 
(thread)of the application program, this thread performs all 
the checkpointing routines without suspending the 
execution of the application code, thus significantly 
reducing the checkpointing overhead. 
 

In order to co-ordinate the operation of the 
checkpointing mechanism in distributed computing 
environments, a novel approach to reliable distributed 
computing for messages-passing applications was devised. 
It takes advantage of the low failure-free overhead of 
coordinated checkpointing methods with logging messages 
that cross the recovery line to avoid blocking the 
application process during the checkpointing protocol. The 
low failure-free overhead is at the expense of a longer  

 

 
rollback time, which is admissible because of the 

extended execution time of the targeted application. 
 

The noteworthy point of the presented approach is 
that a process receiving a message does not need to worry 
whether the received message may become an orphan or 
not. It is the responsibility of the sender of the message to 
make it non-orphan. Because of this, each process is able to 
perform its responsibility independently and simultaneously 
with others just by testing its local Boolean flag. This 
makes the algorithm a single phase one and thereby, in 
effect, makes the algorithm fast, simple and efficient. 

 
A microreboot is the selective crash-restart of only 

those parts of a system that trigger the observed failure. 
Microreboots are largely as effective as full reboots but 30 
times faster[8]. 
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